
Application Context Based Algorithm

for Player Skill Evaluation in MOBA games

Mirko Suznjevic, Maja Matijasevic

University of Zagreb

Faculty of Electrical Engineering and Computing

Zagreb, Croatia

{mirko.suznjevic, maja.matijasevic}@fer.hr

Jelena Konfic

Ericsson Nikola Tesla

Zagreb, Croatia

jelena.konfic@ericsson.com

Abstract — This work is motivated by the challenge to

improve player rating systems in Multiplayer Online Battle

Arena (MOBA) games by incorporating the application context,

as opposed to calculating the player rating based solely on the

match outcome (winning or losing). The application context is

modeled by using a set of parameters describing the players’ in-

game accomplishments and contributions to the team, as well as

the performance of the team as a whole. The proposed

application context based rating algorithm functions as an

extension of the underlying (unmodified) player rating algorithm

by adjusting the rating update step and can thus be applied for

different rating systems in MOBA games. We evaluate the

proposed algorithm by using a dataset comprising over 400,000

matches of the MOBA game Heroes of Newerth.

Keywords— rating system; matchmaking; Elo system; MOBA;

video game; Heroes of Newerth

I. INTRODUCTION

Multiplayer Online Battle Arena (MOBA) is a genre of
video games in which a player controls a single character in
one of two competing teams with a goal of destroying the
opposing team’s base. MOBAs attract millions of users and
have massive earnings – in January 2015, their profit was
estimated at 54 million US dollars [1]. Like in other multi-
player games, a rating system in a MOBA is used to assess an
individual player’s skill, and a matchmaking system is used to
form teams of players with similar levels of skills. In
matchmaking process, it is important that players’ skill levels
(ideally, corresponding to player ratings) are well-balanced,
i.e., that their chances of winning are fairly even, which makes
the game more interesting for the less experienced, as well as
more experienced players [2]. It may be noted that players can
also form teams by themselves, without involvement of the
matchmaking system and regardless of the player ratings and
balance – such cases are not investigated in this paper. In
multiplayer team games, once the teams are formed, each
player contributes to the team according to his or her individual
skills. Thus, rating systems play three important roles: 1)
continuously assess a player’s skill level, 2) enable players to
determine their own standing in the game, and compare it with
that of other players, and 3) use player ratings to provide input
to the matchmaking system.

In many current rating systems for multiplayer team games,
the change in a given player’s rating is calculated based solely
on the match outcome. We consider such systems inherently
“unfair”, in that they do not adequately distinguish, or give
credit to, the individual player’s in-game performance. In other
words, if one of the team players has performed well in a
match, while the other player on the same team has performed
poorly, both players will receive (or lose) the same number of
rating points for winning (or losing) that match (assuming that
they entered the match with similar ratings – more about this
later). Not only can this be very frustrating – especially for
good players, but there is another, less obvious, but more
crucial problem: that such an approach can, over time, lead to
undeservedly high(er) or low(er) player ratings. This is notable,
because the weakening of the correspondence between the
player’s “actual” skill level and the player rating eventually
undermines the fundamental ability of the rating system to
correctly predict the outcome of the match, and thus the ability
to assure the desired initial balance, or “even chances of
winning”, when forming teams.

 Our approach aims to correct this by proposing an
algorithm which analyses the player’s performance in a
particular match and modifies the number of rating points won
or lost based on relating that performance to the historical
information about the performance of all players. We also
provide a case study based on Heroes of Newerth (HoN)
MOBA, developed by S2 Games. We have used publicly
available information on the rating system in HoN, rules, and
gameplay mechanics, and we have collected a dataset
comprising detailed results of over 400,000 matches by using
an Application Program Interface (API) provided by the game
developers. This dataset has been used for the evaluation of our
algorithm and its comparison with the existing rating algorithm
in HoN. Our initial findings show that our algorithm achieves
up to 10% better accuracy of prediction then the current HoN
rating system. Since player’s rating is used when forming
teams, this improvement has the potential to implicitly improve
the matchmaking system as well.

The paper is organized as follows: Section II summarizes
the related work, followed by the description of the basic
features of rating system in HoN in Section III. In Section IV
we describe the proposed algorithm, named ACARI. The
evaluation methodology and results are presented in Sections V
and VI, respectively, and Section VII concludes the paper.

II. RELATED WORK

Many research papers have addressed rating systems for
games since Elo system was invented for the purpose of rating
chess players, in 1959 [3]. Elo system is based on the Bradley-
Terry model for pairwise comparison [4]. The main
assumption in Elo is that each player has current strength,
which is unknown and estimated based on his rating – the
mean value of his performance in the match. In 1999, Mark E.
Glickman invented the Glicko system [5], which incorporates a
rating period into reliability assessment of one’s rating. To
calculate a player’s rating, Glicko uses a “rating deviation”,
which represents uncertainty in the player’s current skill.
Rating deviation is in fact standard deviation, which grows
linearly with the time the player hasn’t played the game.

Elo and Glicko are not suitable for multiplayer games. To
calculate rating for multiple players and multiple teams in a
match, Microsoft Research developed TrueSkill [6]. In
TrueSkill, a player’s skill is represented as a Gaussian-
distributed variable. TrueSkill ratings also incorporate ties.
Various extensions to TrueSkill have been proposed, such as:
solving the problem of variable team size by selecting a
different function for the team performance [7]; to infer entire
time-series of skills of players by smoothing through time
instead of filtering [8]; and through the incorporation of
subgroup ratings into a team’s overall rating [9].

Several notable works have incorporated information, other
than match outcome, into the rating process. A context aware
algorithm has been proposed by Zhang et al. [10]. They
develop a factor model, in which individual skills are modeled
by the inner product of an agent factor vector and a context
factor vector. They generalize the concept of contexts and
combine it with the TrueSkill algorithm to create a simple
extension, called TrueSkill-ext. This approach is tested on
Halo 2 and Dota – a custom scenario for Warcraft 3, which was
the base for creation of the whole MOBA genre. As “context”
they identify specific maps for Halo 2, and heroes for Dota.
Context about players’ characteristics (e.g., good machine
gunner and poor sniper), coupled with statistics from previous
players’ matches, was used in a neural network approach to
matchmaking and rating presented by Delalleau et al. [11], who
assert that their basic algorithm outperforms rating systems,
such as TrueSkill. They modify the matchmaking system to
maximize the match quality based on the developed neural
network and analyze the results on a dataset from the game
Ghost Recon. Role based approach to matchmaking in MOBAs
was proposed by Myślak and Deja [17], but they could not
extract the Elo ratings so an estimate was used for validation
(to guess the role they used the position of the player on the
map). Latency between gaming hosts as context information
was used in Htrae [12] and Switchboard [13]. Jiménez-Dıaz et
al. use machine learning approach to identify combinations of
player behaviors which yield the best results to create better
teams [14]. Di Fatta et al. evaluate the skill of a chess player
not by the outcome of the game, but by the moves made by the
player, using the Bayesian inference method [15].

Our approach is comparable to Switchboard approach [13],
in that it can be applied to any rating algorithm. Also, our
approach is similar, and partially based on the context
approach described in [10], but with several important

differences: 1) we modify only the rating update step of the
algorithm, not the algorithm itself; 2) our proposed
modification is performed on the rating adjustment (i.e.,
increase or decrease of player's rating after a match), which is
calculated in the final step of the rating process – hence, our
algorithm can be used with any existing rating algorithm; and
3) we add two levels of context: one at the overall team level,
to capture the synergy of the team play, and the other at the
individual player level, to capture the differences in
performance between players. Finally, we present a concrete
example, using HoN as a use case, and evaluate the algorithm
using a very large, recently gathered dataset with very closely
estimated Elo ratings, as opposed to [17].

III. RATING SYSTEM OF HEROES OF NEWERETH

To the best of our knowledge, HoN rating system uses a
modified version of Elo. A player’s rating in HoN is termed
Match Making Rating (MMR), because this rating is used in
the matchmaking process. To the best of our knowledge, MMR
is calculated based solely on the match outcome. Exact rules
and formulae for rating and matchmaking are proprietary and
so far not made public so it is not possible to say whether
additional enhancements such as avoidance of repeated
opponents of the team-based Swiss Ladder system are
implemented. Nevertheless, it can be assumed that due to the
sheer number of player in MOBAs (from tens of thousands to
millions) such systems are not needed. The description that
follows is based on our own experience, observation, or
publicly available information

1
.

The value of MMR for a newly registered player is initially
set to 1500. When forming teams, the rating system tries to
bring together players with similar ratings so that the
differences between average MMRs of the opposing teams, as
well as the individual MMRs of the players comprising the
team, are relatively small. After each match, depending on the
outcome, a player typically gets 5 points added to MMR if his
or her team won, or, 5 points subtracted from MMR if his or
her team lost the match. Number of points won or lost may
vary, depending on the difference between average MMRs of
the opposing teams and the difference between MMRs of
individual players in the team. The maximum number of points
one can get or lose is 10. The players who leave the match
always lose 5 points and their teammates lose 3 points,
regardless of their MMRs.

There are also a few MMR control mechanisms that serve
special purposes, like the mechanism that aims to quickly place
a new player into an appropriate skill rank. Each new player is
initially put into a so called “placement phase”, in which one’s
rating can change faster than usual so the player can quickly
reach the MMR which roughly reflects his or her skill level.
Also, the rating system monitors all players’ scores, detects
inconsistencies in MMR (e.g., if a player, who is currently in
the “placement phase”, gets an unlikely high number of kills,
like, 15 kills in a row) and reacts by quickly increasing the
MMR in much larger steps (e.g., +80 MMR). This is an
example of a context based adjustment of a rating step.

1
 http://forums.heroesofnewerth.com/showthread.php?562680-

Matchmaking-System-Clarifications-and-Feedback

IV. THE PROPOSED APPLICATION CONTEXT AWARE

RATING ALGORITHM - ACARI

We now define the fundamental terms related to the
proposed Application Context Aware Rating algorIthm
(ACARI, for short) in Table 1.

The primary premise of ACARI is that teams and players
who perform significantly better (or worse) than average
should be rewarded (punished) with adequate rating
adjustment. We also note that every player in each game has a
certain role that is correlated with the selected hero (one hero
can assume one or more roles per match). In future work we
aim to devise role identification techniques, similar to [17], as
players can play heroes in a way in which developers did not
envision. Players may prefer to play some roles over others,
and may have different skill levels for different roles.
Therefore, as a final premise we state that player’s skill level
(and therefore rating) for different roles should have different
values. Hence, ACARI introduces two main extensions when
compared to traditional rating systems:

 Points distribution based on player’s in-game

performance, including:

o Performance of a team.

o Performance of a single player.

 Different rating for each role a player has in a match.

ACARI takes into account different roles that a player can take
during the match, and calculates MMR change separately for
each role. Moreover, ACARI tracks player’s total MMR,
which consists of weighted average of all role MMRs. As an
input, ACARI takes changes in MMR calculated by the
existing (unmodified) rating algorithm, and adjusts them based
on the performance of the opposing teams and performance of
a player in regard to historical performance data.

Table 1 – Term definitions for ACARI

Term Definition

Performance
parameter

Application level information about player’s
or team’s performance (e.g., number of
killed heroes, experience gathered, gold
earned, etc.)

Hero Game character with a unique set of abilities.
Each (human) player controls one hero.

Role The function a specific hero performs within
a team. A hero can perform multiple roles
(e.g., support, ganker, etc.) in a match.

Modification
factor

The factor indicating the performance level
(player’s or team’s) with respect to a given
performance parameter. It s a real number,
which can range from -0.5 to 0.5.

Weight
factor

Factor indicating how important a parameter
is for performing a role. Weight factors can
take the following values: 0 (not important),
0.5 (slightly important), and 1 (important).

Role MMR MMR associated with a specific role

Team MMR MMR associated with a specific team

Total MMR MMR associated with a player – weighted
average of all his or her Role MMRs

Rating
adjustment

Update of one’s MMR after one match

A. Rating modification based on player’s performance

A player can take multiple roles during a MOBA match.
We define a set of roles , where denotes a
role, and m is the number of roles defined in a game. Each hero
 from the set of heroes , where is the

number of heroes in the game, can in some amount fulfill the
role . Therefore, each hero is assigned a specific role

vector = with values. Each value

represents the percentage in which hero fulfils the role .

For describing the application level player performance, we
define the vector , where is the number of
in-game performance parameters taken into account for a
specific game. P is constructed for each player in the match.
Each value in vector P represents the percentage of the player’s
contribution to the overall match score of his or her team for a
given performance parameter .

It should also be noted that each performance parameter
has a different (relative) “importance” for each role. We define
a weight factor matrix , sized , where wki corresponds
to the importance of parameter for performing
the role Weight factors wki take three possible
values: 0, 0.5, or 1. These values have been determined
empirically, based on the practical knowledge of the game
mechanics of several experienced HoN players who indicated
the importance of each parameter. In future work, we plan to
evaluate the sensitivity of ACARI with respect to different
combinations of weight factors.

The algorithm is described next. First, we calculate the
score of parameter for each parameter for each role .
Note that is defined for a role, and not for a hero. Given a
match outcome, if the player wins, is calculated as:

 (5)

If the player loses, is calculated as:

 (6)

where is the modification factor (,).
In this way, rating adjustment can be increased or decreased by
50%, based on the performance. Modification factor for role
 is calculated by using a function of a given in-game
performance parameter . An example of a function to
determine the value of is shown in Figure 1.

Figure 1 – Modification factor function (example)

Points A, B, C, and D split the line into five segments,
denoting bad, below average, average, above average, and
good player’s performance with respect to the parameter .
Values of at points A, B, C and D would typically be
different for different roles. In the example in Figure 1, they
have been calculated based on a statistical analysis of 10,000
matches. They represent:

 or 16.66 (point A),

 or 33.33 (point

B),

 or 66.66 (point C), and

 or 83.33 (point D) percentile of

the selected performance parameter distribution extracted from
10,000 matches.

Next, score of role (SRi) for the role is calculated as:

 (7)

where is the weight factor from matrix , and is the
score of parameter for role , and is the total number of
parameters. Considering the modification factor, the number of
parameters and their weight factors, there is a maximum
number of points for every role. To allow comparison,
the number of points calculated using (7) needs to be scaled:

 (8)

where is the maximum number of points for the role ,
and is the rating adjustment, i.e., a number of points
given (or subtracted), obtained by the existing (“base”)
algorithm.

Rating adjustment for each player with the hero is

calculated by summing the scores of all roles, multiplied with
the percentage in which hero fulfils the role . Since we

cannot be certain which role player had in the game, all roles
that the hero fulfils are taken into account.

 (9)

The idea of the algorithm for player rating up to this point
is illustrated in Figure 2. External data in the figure denotes
data defined by the existing mechanics in specific game.

The result is scaled so that the sum of points players get

based on their performance fits the number of points the whole
team can get:

 (10)

where is the rating adjustment of the whole team, and is
the number of players in the team. We explain how is
calculated in the next section. ACARI tracks role MMRs and
total MMR per player, so modified rating adjustments are in
the end added to each of the defined MMRs.

B. Rating modification based on team’s performance

For describing the application level team performance, we
define the vector where is the
number of application context team performance parameters
() taken into account when calculating team performance.
Team performance is then calculated as:

 (11)

Using the notation to denote the i-th team performance
parameter of the winning team, and to denote the
corresponding i-th parameter of the losing team, the
performance difference between the teams may be expressed as
the ratio of their respective performances:

 (12)

Rating adjustment obtained from the existing algorithm
(i.e., the sum of rating adjustments of all players in the team)
 is modified to get the final rating adjustment for the team
() using the following expression:

 (13)

 Analogously to single player performance, the modification
factor is a function of DP, which is shaped like in Figure 1,
where values A, B, C and D determine in which category the
ratio of team’s performances falls into. The higher the value of
 , the more points will the winning (losing) team gain (lose).

V. EVALUATION METHODOLOGY

A. Dataset gathering and filtering

To evaluate ACARI, we collected real match data and
players’ rating data (Table 2), by using HoN Statistics API
(https://api.heroesofnewerth.com), which provides users with
statistical data about matches, players, heroes, and items in the
game. As data can be retrieved by HTTP, we designed and
implemented PHP scripts to collect it and save it to a database.
Data collection process was made difficult by the limitation on
the number of requests API could serve, presence of erroneous
information, and lack of some needed information. Finally,
only the statistical match data, e.g., number of heroes killed per
each player, which player was playing with which hero,
information who won and who lost, etc., and history of played
matches per player were retrieved by using the mentioned API.

History of played matches was used for filtering of match
data, so as to retain only the ranked matches (and exclude
public and “easy mode” matches in which the skill is not
tracked, for beginners or people who want shorter games).

List of

performance

parameters

Existing rating

process
Match

Performance

parameter

values
Rating change

of player
Role share

of a hero
Game’s

historical

data

Score of

parameter

Parameter

importance

(weight factor)

per role

Score of

role

Role

MMR

change

Total

MMR

change

Process
External

data
Data

Legend

Figure 2 – Illustration of the ACARI’s logic regarding

player's performance rating

Table 2 – Statistics of the retrieved data

No. of retrieved matches – dataset 1 (D1) 1,101,299

No. of valid matches – dataset 2 (D2) 1,101,137

No. of matches for which ACARI ratings

could be calculated – dataset 3 (D3)
443,356

Apart from that, we retrieved players’ rating data from the
Ranked MMR Ladder (http://www.heroesofnewerth.com/
ladder/), which was then used to calculate player’s initial
MMR, because the data from the HoN API contains only
MMR changes and not the player’s initial MMR at the
beginning of each match. The “initial MMR” is considered to
be the player’s MMR in the first match he played, that was
recorded in the retrieved match data. It is calculated
“backwards” – by subtracting the rating adjustments, available
in the match data, from the most recent MMR obtained from
the ladder. The initial MMR was also needed to calculate
MMR for every role and total MMR used for evaluation of
ACARI. Combining the data from HoN Statistics API and
Ranked MMR Ladder, we have obtained match data from the
December 20, 2014, to the April 29, 2015. Ladder was
retrieved on the April 29, 2015. This data corresponds to the
dataset D1 (Table 2), which needed to be filtered. First, we
removed all malformed entries (e.g., only one player or one
team, results exist only for one player, and no information
about the hero used). Such matches do not contain all the
information needed for calculating the role MMR and total
MMR, so they have been filtered out as invalid – resulting in
the filtered dataset D2. Finally, the total number of players
participating in the matches (166,502) in dataset D2 is greater
than the total number of players listed on the ladder (135,007),
and it is also greater than the total number of players for whom
the initial MMR had been calculated (102,245). A possible
explanation for this discrepancy is that some players did not
participate in any of the retrieved matches (which could be
because they did not play ranked matches, but played other
types of matches). The dataset D3 represents all matches for
which role MMR could be calculated for all participants. To
validate our filtering process, we calculated the distribution of
the initial MMR for all players in D3. The best fit was normal
distribution with parameters μ=1536, σ=112.5, which is in line
with previous findings about HoN’s MMR distribution
(μ=1528, σ=112) [16]. Obtained datasets are freely available,
and interested parties may contact the authors to obtain them.

B. Evaluation process

First we should note the parameters of the ACARI model
which were used for the use case of HoN. Using the
performance parameters of the team, we define the vector TP:

Note that the performance parameters comprising the TP
are calculated for the team as a whole. Using the performance
parameters of an individual player, we define the vector P:

 .

In HoN there are over 120 heroes available, and each hero
has a role vector determined by the game designers (this
data is accessible through the HoN Statistics API). The defined
set of roles R in HoN is:

We evaluate ACARI by comparing the expected match
result (ER) according to Elo algorithm for two different input
ratings: 1) ratings of the existing system in HoN, and 2) ratings
calculated with extending the existing system in HoN with
ACARI. The reason for using Elo algorithm is because, to the
best of our knowledge, it is the base algorithm for rating and
matchmaking system in HoN. The ER (serves as
a predictor of which team is more likely to win (according to a
given rating system), and it is calculated by the expression [3]:

 (14)

where and are the average MMRs of the opposing teams
A and B, respectively. Value of ER is interpreted as follows:

 if ER is greater or equal than 0.5, it is assumed that team A
will win,

 if ER is less than 0.5, it is assumed that team A will lose.

The closer the value of ER is to 1, the more “confident” is
the algorithm in the team A’s victory. It is also important to
note that the expected result determines the balance of the
match – the closer the average MMRs of the opposing teams,
the more balanced the match. (The balance must be appropriate
for a match to start.) Only matches in which all players have a
known initial MMR can be considered for evaluating ACARI,
meaning that the dataset D3 (with 443,356 matches) is used.

We evaluate ACARI in two ways – by using the role MMR
and by using the total MMR. We assume that using the role
MMRs will give better results, since it better reflects the skill
level of the player for all roles that the player’s hero took in
that particular match (as recorded in the match data).

VI. RESULTS

The expected result is calculated for the winning team, and
six categories of the evaluation outcomes are defined in Table
3.

Table 3 – Evaluation outcome categories

Code Interpretation

YYA Both rating algorithms had correctly calculated

outcomes, but ACARI was more certain in the

calculated result

YYE Both rating algorithms had correctly calculated

outcomes, but the existing HoN algorithm was more

certain in the result

YNA ACARI had a correctly calculated outcome, while

the existing HoN rating did not

NNE Both rating algorithms did not have correctly

calculated outcomes, but ACARI was less certain

NNA Both rating algorithms did not have correctly

calculated outcomes, but ACARI was more certain

NYE The existing HoN rating had a correctly calculated

outcome, while ACARI did not

Each category is represented by a three-letter code, in which

the first letter denotes whether ACARI ratings resulted in a

correct prediction of the winner (Y or N), the second letter

denotes whether existing HoN rating resulted in a correct

prediction (Yes or No), and the third letter shows which

algorithm (ACARI, or Existing HoN algorithm), did better in

terms of prediction “certainty” (based on the ER value, e.g.,

ER value of 0.8 means higher prediction certainty than 0.65).

The evaluation results are shown in the Figure 3. In both
cases ACARI gives better results compared to results of the
current rating system. In total, ACARI predicted the match
outcome correctly in 50.22% of the total number of matches
when using the total MMR, and 59.99% when using the role
MMR, while for the existing HoN ratings that number is
48.48%. In both cases, most of the results belong to the
category in which both ACARI and existing ratings correctly
predicted the outcome, but ACARI was more certain in the
calculated result (YYA). Using role MMR yielded significantly
better results than using total MMR, thus increasing the overall
accuracy (YYA, YYE, and YNA) and certainty of prediction
(increased YYA and YNA). Number of the outcomes when
ACARI rating resulted in a correct prediction and the existing
HoN ratings did not, compared to reverse case (YNA and NYE
respectively) is almost threefold. As expected, role MMRs give
better results, but in both cases an improvement over the
existing rating algorithm has been convincingly demonstrated.

In practical terms, to enable the use of role MMR, the order
of hero selection and the start of matchmaking process should
be reversed. Namely, in current HoN implementation, the
teams are formed first, followed by the hero selection, and to
enable the use of role MMR, it should be the other way round,
so that the player chooses a hero first, followed by the
matchmaking process.

VII. CONCLUSIONS AND FUTURE WORK

To summarize, ACARI gives better results and outcome is
correctly predicted in more than 50% of the total number of
matches when using total MMR and almost in 60% when using
role MMR. ACARI can be used in all MOBAs based on same
principles as HoN (i.e., that every player has a role in the
match) with minor adjustments.

In future work we aim to use machine learning algorithms

to find out which coefficients that relate parameters to roles
would yield the most precise results, to construct methods for
exact role detection, and to compare ACARI to similar rating
systems mentioned in Section II.

ACKNOWLEDGMENT

This work has been supported in part by Croatian Science
Foundation under the project 8065 “Human-centric
Communications in Smart Networks”".

REFERENCES

[1] M. Minotti, “World of Warcraft helps the digital games market generate

almost $1 billion a month,” Online: http://venturebeat.com/2015/03/12/
world-of-warcraft-helps-the-digitalgames-market-generate-almost-1-

billion-a-month/ [accessed Sept. 4, 2015].

[2] M. Csikszentmihalyi, “Flow: the psychology of optimal experience,”

New York: Harper Collins, 1991.

[3] A. E. Elo, “The rating of chessplayers, past and present,” Arco Pub.,

1978.

[4] R. A. Bradley, and M. E. Terry, “The rank analysis of incomplete block
designs: I. The method of paired comparisons,” Biometrika, Vol. 39,

No. 3/4, Dec. 1952, pp. 324–345.

[5] M. E. Glickman, “The Glicko system,” Boston University, 1995. On-

line: http://www.glicko.net/glicko.html [accessed Sept. 4, 2015].

[6] R. Herbrich, T. Minka, and T. Graepel, “TrueSkillTM: A Bayesian skill
rating system,” Advances in Neural Information Processing Systems 20,

MIT Press, Jan. 2007, pp. 569–576.

[7] S. Nikolenko, and A. Sirotkin, “A new Bayesian rating system for team

competitions,” Proceedings of the 28th International Conference on

Machine Learning (ICML-11), 2011, pp. 601–608.

[8] D. Pierre, R. Herbrich, T. Minka, and Thore Graepe, “Trueskill through

time: Revisiting the history of chess,” Advances in Neural Information

Processing Systems, 2007, pp. 337–344.

[9] C. DeLong, N. Pathak, K. Erickson, E. Perrino, K. Shim, and J.

Srivastava, “TeamSkill: modeling team chemistry in online multi-player
games,” Advances in Knowledge Discovery and Data Mining. Springer

Berlin Heidelberg, 2011. pp. 519-531.

[10] L. Zhang, J. Wu, Z.-C. Wang, and C.-J. Wang, “A factor-based model
for context-sensitive skill rating systems,” Proc. of the 22nd IEEE

International Conference on Tools with Artificial Intelligence (ICTAI),

Vol. 2, 2010, pp. 249–255.

[11] O. Delalleau, E. Contal, E. Thibodeau-Laufer, R. Chandias Ferrari, Y.

Bengio, and F. Zhang, “Beyond Skill Rating: Advanced Matchmaking
in Ghost Recon Online,” IEEE Transactions on Computational

Intelligence and AI in Games, 2012, Vol. 4, No. 3, pp. 167–177.

[12] S. Agarwal, and Jacob R. Lorch. “Matchmaking for online games and

other latency-sensitive P2P systems,” ACM SIGCOMM Computer

Communication Review, 2009, Vol. 39, No. 4, pp. 315-326.

[13] J. Manweiler, S. Agarwal, M. Zhang, R. R. Choudhury, and P. Bahl,

“Switchboard: a matchmaking system for multiplayer mobile games,”

Proc. of the 9th international conference on Mobile systems,

applications, and services, 2011, pp. 71-84.

[14] G. Jiménez-Díaz, H. D. Menéndez, D. Camacho, and P. A. González-
Calero, “Predicting performance in team games – the automatic coach,”

ICAART 2011 Proc. of the 3rd International Conference on Agents and

Artificial Intelligence, 2011, pp. 401-406.

[15] G. Di Fatta, G. M. Haworth, and K. W. Regan, “Skill rating by Bayesian

inference,” IEEE Symposium. on Computational Intelligence and Data

Mining, 2009, pp. 89-94.

[16] N. Caplar, M. Suznjevic, and M. Matijasevic, “Analysis of player’s in-

game performance vs rating: Case study of Heroes of Newerth,” Proc. of
the Foundations of Digital Games (FDG 2013), 2013, pp. 237-244.

[17] M. Myślak, and D. Deja, “Developing game-structure sensitive

matchmaking system for massive-multiplayer online games,” Social
Informatics, 2014, pp. 200-208.

Figure 3 – Evaluation results

