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Abstract — This work is motivated by the challenge to 

improve player rating systems in Multiplayer Online Battle 

Arena (MOBA) games by incorporating the application context, 

as opposed to calculating the player rating based solely on the 

match outcome (winning or losing). The application context is 

modeled by using a set of parameters describing the players’ in-

game accomplishments and contributions to the team, as well as 

the performance of the team as a whole. The proposed 

application context based rating algorithm functions as an 

extension of the underlying (unmodified) player rating algorithm 

by adjusting the rating update step and can thus be applied for 

different rating systems in MOBA games. We evaluate the 

proposed algorithm by using a dataset comprising over 400,000 

matches of the MOBA game Heroes of Newerth. 

Keywords— rating system; matchmaking; Elo system; MOBA; 

video game; Heroes of Newerth 

I.  INTRODUCTION  

Multiplayer Online Battle Arena (MOBA) is a genre of 
video games in which a player controls a single character in 
one of two competing teams with a goal of destroying the 
opposing team’s base. MOBAs attract millions of users and 
have massive earnings – in January 2015, their profit was 
estimated at 54 million US dollars [1]. Like in other multi-
player games, a rating system in a MOBA is used to assess an 
individual player’s skill, and a matchmaking system is used to 
form teams of players with similar levels of skills. In 
matchmaking process, it is important that players’ skill levels 
(ideally, corresponding to player ratings) are well-balanced, 
i.e., that their chances of winning are fairly even, which makes 
the game more interesting for the less experienced, as well as 
more experienced players [2]. It may be noted that players can 
also form teams by themselves, without involvement of the 
matchmaking system and regardless of the player ratings and 
balance – such cases are not investigated in this paper. In 
multiplayer team games, once the teams are formed, each 
player contributes to the team according to his or her individual 
skills. Thus, rating systems play three important roles: 1) 
continuously assess a player’s skill level, 2) enable players to 
determine their own standing in the game, and compare it with 
that of other players, and 3) use player ratings to provide input 
to the matchmaking system.  

 

 

In many current rating systems for multiplayer team games, 
the change in a given player’s rating is calculated based solely 
on the match outcome. We consider such systems inherently 
“unfair”, in that they do not adequately distinguish, or give 
credit to, the individual player’s in-game performance. In other 
words, if one of the team players has performed well in a 
match, while the other player on the same team has performed 
poorly, both players will receive (or lose) the same number of 
rating points for winning (or losing) that match (assuming that 
they entered the match with similar ratings – more about this 
later). Not only can this be very frustrating – especially for 
good players, but there is another, less obvious, but more 
crucial problem: that such an approach can, over time, lead to 
undeservedly high(er) or low(er) player ratings. This is notable, 
because the weakening of the correspondence between the 
player’s “actual” skill level and the player rating eventually 
undermines the fundamental ability of the rating system to 
correctly predict the outcome of the match, and thus the ability 
to assure the desired initial balance, or “even chances of 
winning”, when forming teams. 

 Our approach aims to correct this by proposing an 
algorithm which analyses the player’s performance in a 
particular match and modifies the number of rating points won 
or lost based on relating that performance to the historical 
information about the performance of all players. We also 
provide a case study based on Heroes of Newerth (HoN) 
MOBA, developed by S2 Games. We have used publicly 
available information on the rating system in HoN, rules, and 
gameplay mechanics, and we have collected a dataset 
comprising detailed results of over 400,000 matches by using 
an Application Program Interface (API) provided by the game 
developers. This dataset has been used for the evaluation of our 
algorithm and its comparison with the existing rating algorithm 
in HoN. Our initial findings show that our algorithm achieves 
up to 10% better accuracy of prediction then the current HoN 
rating system. Since player’s rating is used when forming 
teams, this improvement has the potential to implicitly improve 
the matchmaking system as well. 

The paper is organized as follows: Section II summarizes 
the related work, followed by the description of the basic 
features of rating system in HoN in Section III. In Section IV 
we describe the proposed algorithm, named ACARI. The 
evaluation methodology and results are presented in Sections V 
and VI, respectively, and Section VII concludes the paper. 



II. RELATED WORK 

Many research papers have addressed rating systems for 
games since Elo system was invented for the purpose of rating 
chess players, in 1959 [3]. Elo system is based on the Bradley-
Terry model for pairwise comparison [4]. The main 
assumption in Elo is that each player has current strength, 
which is unknown and estimated based on his rating – the 
mean value of his performance in the match. In 1999, Mark E. 
Glickman invented the Glicko system [5], which incorporates a 
rating period into reliability assessment of one’s rating. To 
calculate a player’s rating, Glicko uses a “rating deviation”, 
which represents uncertainty in the player’s current skill. 
Rating deviation is in fact standard deviation, which grows 
linearly with the time the player hasn’t played the game.  

Elo and Glicko are not suitable for multiplayer games. To 
calculate rating for multiple players and multiple teams in a 
match, Microsoft Research developed TrueSkill [6]. In 
TrueSkill, a player’s skill is represented as a Gaussian-
distributed variable. TrueSkill ratings also incorporate ties. 
Various extensions to TrueSkill have been proposed, such as: 
solving the problem of variable team size by selecting a 
different function for the team performance [7]; to infer entire 
time-series of skills of players by smoothing through time 
instead of filtering [8]; and through the incorporation of 
subgroup ratings into a team’s overall rating [9].  

Several notable works have incorporated information, other 
than match outcome, into the rating process. A context aware 
algorithm has been proposed by Zhang et al. [10]. They 
develop a factor model, in which individual skills are modeled 
by the inner product of an agent factor vector and a context 
factor vector. They generalize the concept of contexts and 
combine it with the TrueSkill algorithm to create a simple 
extension, called TrueSkill-ext. This approach is tested on 
Halo 2 and Dota – a custom scenario for Warcraft 3, which was 
the base for creation of the whole MOBA genre. As “context” 
they identify specific maps for Halo 2, and heroes for Dota. 
Context about players’ characteristics (e.g., good machine 
gunner and poor sniper), coupled with statistics from previous 
players’ matches, was used in a neural network approach to 
matchmaking and rating presented by Delalleau et al. [11], who 
assert that their basic algorithm outperforms rating systems, 
such as TrueSkill. They modify the matchmaking system to 
maximize the match quality based on the developed neural 
network and analyze the results on a dataset from the game 
Ghost Recon. Role based approach to matchmaking in MOBAs 
was proposed by Myślak and Deja [17], but they could not 
extract the Elo ratings so an estimate was used for validation 
(to guess the role they used the position of the player on the 
map). Latency between gaming hosts as context information 
was used in Htrae [12] and Switchboard [13]. Jiménez-Dıaz et 
al. use machine learning approach to identify combinations of 
player behaviors which yield the best results to create better 
teams [14]. Di Fatta et al. evaluate the skill of a chess player 
not by the outcome of the game, but by the moves made by the 
player, using the Bayesian inference method [15].  

Our approach is comparable to Switchboard approach [13], 
in that it can be applied to any rating algorithm. Also, our 
approach is similar, and partially based on the context 
approach described in [10], but with several important 

differences: 1) we modify only the rating update step of the 
algorithm, not the algorithm itself; 2) our proposed 
modification is performed on the rating adjustment (i.e., 
increase or decrease of player's rating after a match), which is 
calculated in the final step of the rating process – hence, our 
algorithm can be used with any existing rating algorithm; and 
3) we add two levels of context: one at the overall team level, 
to capture the synergy of the team play, and the other at the 
individual player level, to capture the differences in 
performance between players. Finally, we present a concrete 
example, using HoN as a use case, and evaluate the algorithm 
using a very large, recently gathered dataset with very closely 
estimated Elo ratings, as opposed to [17]. 

III. RATING SYSTEM OF HEROES OF NEWERETH 

To the best of our knowledge, HoN rating system uses a 
modified version of Elo. A player’s rating in HoN is termed 
Match Making Rating (MMR), because this rating is used in 
the matchmaking process. To the best of our knowledge, MMR 
is calculated based solely on the match outcome. Exact rules 
and formulae for rating and matchmaking are proprietary and 
so far not made public so it is not possible to say whether 
additional enhancements such as avoidance of repeated 
opponents of the team-based Swiss Ladder system are 
implemented. Nevertheless, it can be assumed that due to the 
sheer number of player in MOBAs (from tens of thousands to 
millions) such systems are not needed. The description that 
follows is based on our own experience, observation, or 
publicly available information

1
. 

The value of MMR for a newly registered player is initially 
set to 1500. When forming teams, the rating system tries to 
bring together players with similar ratings so that the 
differences between average MMRs of the opposing teams, as 
well as the individual MMRs of the players comprising the 
team, are relatively small. After each match, depending on the 
outcome, a player typically gets 5 points added to MMR if his 
or her team won, or, 5 points subtracted from MMR if his or 
her team lost the match. Number of points won or lost may 
vary, depending on the difference between average MMRs of 
the opposing teams and the difference between MMRs of 
individual players in the team. The maximum number of points 
one can get or lose is 10. The players who leave the match 
always lose 5 points and their teammates lose 3 points, 
regardless of their MMRs.  

There are also a few MMR control mechanisms that serve 
special purposes, like the mechanism that aims to quickly place 
a new player into an appropriate skill rank. Each new player is 
initially put into a so called “placement phase”, in which one’s 
rating can change faster than usual so the player can quickly 
reach the MMR which roughly reflects his or her skill level. 
Also, the rating system monitors all players’ scores, detects 
inconsistencies in MMR (e.g., if a player, who is currently in 
the “placement phase”, gets an unlikely high number of kills, 
like, 15 kills in a row) and reacts by quickly increasing the 
MMR in much larger steps (e.g., +80 MMR). This is an 
example of a context based adjustment of a rating step. 

                                                           
1
 http://forums.heroesofnewerth.com/showthread.php?562680-

Matchmaking-System-Clarifications-and-Feedback 



IV. THE PROPOSED APPLICATION CONTEXT AWARE  

RATING ALGORITHM - ACARI 

We now define the fundamental terms related to the 
proposed Application Context Aware Rating algorIthm 
(ACARI, for short) in Table 1.  

The primary premise of ACARI is that teams and players 
who perform significantly better (or worse) than average 
should be rewarded (punished) with adequate rating 
adjustment. We also note that every player in each game has a 
certain role that is correlated with the selected hero (one hero 
can assume one or more roles per match). In future work we 
aim to devise role identification techniques, similar to [17], as 
players can play heroes in a way in which developers did not 
envision.  Players may prefer to play some roles over others, 
and may have different skill levels for different roles. 
Therefore, as a final premise we state that player’s skill level 
(and therefore rating) for different roles should have different 
values. Hence, ACARI introduces two main extensions when 
compared to traditional rating systems: 

 Points distribution based on player’s in-game 

performance, including: 

o Performance of a team. 

o Performance of a single player. 

 Different rating for each role a player has in a match. 

ACARI takes into account different roles that a player can take 
during the match, and calculates MMR change separately for 
each role. Moreover, ACARI tracks player’s total MMR, 
which consists of weighted average of all role MMRs. As an 
input, ACARI takes changes in MMR calculated by the 
existing (unmodified) rating algorithm, and adjusts them based 
on the performance of the opposing teams and performance of 
a player in regard to historical performance data.  

Table 1 – Term definitions for ACARI 

Term Definition 

Performance 
parameter 

Application level information about player’s 
or team’s performance (e.g., number of 
killed heroes, experience gathered, gold 
earned, etc.) 

Hero Game character with a unique set of abilities. 
Each (human) player controls one hero. 

Role The function a specific hero performs within 
a team. A hero can perform multiple roles 
(e.g., support, ganker, etc.) in a match. 

Modification 
factor 

The factor indicating the performance level 
(player’s or team’s) with respect to a given 
performance parameter. It s a real number, 
which can range from -0.5 to 0.5. 

Weight 
factor 

Factor indicating how important a parameter 
is for performing a role. Weight factors can 
take the following values: 0 (not important), 
0.5 (slightly important), and 1 (important). 

Role MMR MMR associated with a specific role 

Team MMR MMR associated with a specific team 

Total MMR MMR associated with a player – weighted 
average of all his or her Role MMRs 

Rating 
adjustment 

Update of one’s MMR after one match 

A. Rating modification based on player’s performance 

A player can take multiple roles during a MOBA match. 
We define a set of roles               , where    denotes a 
role, and m is the number of roles defined in a game. Each hero 
   from the set of heroes              , where   is the 

number of heroes in the game, can in some amount fulfill the 
role   . Therefore, each hero    is assigned a specific role 

vector    =                 with   values. Each value     

represents the percentage in which hero    fulfils the role   . 

For describing the application level player performance, we 
define the vector               , where   is the number of 
in-game performance parameters taken into account for a 
specific game. P is constructed for each player in the match. 
Each value in vector P represents the percentage of the player’s 
contribution to the overall match score of his or her team for a 
given performance parameter   . 

It should also be noted that each performance parameter 
has a different (relative) “importance” for each role. We define 
a weight factor matrix  , sized    , where wki corresponds 
to the importance of parameter           for performing 
the role             Weight factors wki take three possible 
values: 0, 0.5, or 1. These values have been determined 
empirically, based on the practical knowledge of the game 
mechanics of several experienced HoN players who indicated 
the importance of each parameter. In future work, we plan to 
evaluate the sensitivity of ACARI with respect to different 
combinations of weight factors. 

The algorithm is described next. First, we calculate the 
score of parameter      for each parameter    for each role   . 
Note that      is defined for a role, and not for a hero. Given a 
match outcome, if the player wins,      is calculated as:  

           (5) 

If the player loses,      is calculated as: 

                             (6) 

where   is the modification factor (              ,    ). 
In this way, rating adjustment can be increased or decreased by 
50%, based on the performance. Modification factor   for role 
   is calculated by using a function of a given in-game 
performance parameter   . An example of a function to 
determine the value of   is shown in Figure 1. 

 

Figure 1 – Modification factor function (example) 



Points A, B, C, and D split the line into five segments, 
denoting bad, below average, average, above average, and 
good player’s performance with respect to the parameter   . 
Values of    at points A, B, C and D would typically be 
different for different roles. In the example in Figure 1, they 
have been calculated based on a statistical analysis of 10,000 
matches. They represent:  

 
 or 16.66 (point A),  

 
 or 33.33 (point 

B),  
 
 or 66.66 (point C), and  

 
 or 83.33 (point D) percentile of 

the selected performance parameter distribution extracted from 
10,000 matches.  

Next, score of role (SRi) for the role    is calculated as: 

                 
 
     (7) 

where      is the weight factor from matrix  , and      is the 
score of parameter    for role   , and   is the total number of 
parameters. Considering the modification factor, the number of 
parameters and their weight factors, there is a maximum 
number of points       for every role. To allow comparison, 
the number of points calculated using (7) needs to be scaled:  

           
   

     
        (8) 

where       is the maximum number of points for the role   , 
and       is the rating adjustment, i.e., a number of points 
given (or subtracted), obtained by the existing (“base”) 
algorithm.  

Rating adjustment for each player with the hero    is 

calculated by summing the scores of all roles, multiplied with 
the percentage in which hero    fulfils the role   . Since we 

cannot be certain which role player had in the game, all roles 
that the hero    fulfils are taken into account. 

                    
 
     (9) 

The idea of the algorithm for player rating up to this point 
is illustrated in Figure 2. External data in the figure denotes 
data defined by the existing mechanics in specific game.  

The result     is scaled so that the sum of points players get 

based on their performance fits the number of points the whole 
team can get: 

          
  

    
 
   

               (10) 

where    is the rating adjustment of the whole team, and   is 
the number of players in the team. We explain how    is 
calculated in the next section. ACARI tracks role MMRs and 
total MMR per player, so modified rating adjustments are in 
the end added to each of the defined MMRs.   

B. Rating modification based on team’s performance  

For describing the application level team performance, we 
define the vector                    where   is the 
number of application context team performance parameters 
(   ) taken into account when calculating team performance. 
Team performance is then calculated as:  

            
      (11) 

Using the notation      to denote the i-th team performance 
parameter of the winning team, and      to denote the 
corresponding i-th parameter of the losing team, the 
performance difference between the teams may be expressed as 
the ratio of their respective performances:  

   
     

 
   

     
 
    

    (12) 

Rating adjustment obtained from the existing algorithm 
(i.e., the sum of rating adjustments of all players in the team) 
      is modified to get the final rating adjustment for the team 
(  ) using the following expression: 

                 (13) 

 Analogously to single player performance, the modification 
factor   is a function of DP, which is shaped like in Figure 1, 
where values A, B, C and D determine in which category the 
ratio of team’s performances falls into. The higher the value of 
 , the more points will the winning (losing) team gain (lose). 

V. EVALUATION METHODOLOGY 

A. Dataset gathering and filtering 

To evaluate ACARI, we collected real match data and 
players’ rating data (Table 2), by using HoN Statistics API 
(https://api.heroesofnewerth.com), which provides users with 
statistical data about matches, players, heroes, and items in the 
game. As data can be retrieved by HTTP, we designed and 
implemented PHP scripts to collect it and save it to a database. 
Data collection process was made difficult by the limitation on 
the number of requests API could serve, presence of erroneous 
information, and lack of some needed information. Finally, 
only the statistical match data, e.g., number of heroes killed per 
each player, which player was playing with which hero, 
information who won and who lost, etc., and history of played 
matches per player were retrieved by using the mentioned API.  

History of played matches was used for filtering of match 
data, so as to retain only the ranked matches (and exclude 
public and “easy mode” matches in which the skill is not 
tracked, for beginners or people who want shorter games). 
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Figure 2 – Illustration of the ACARI’s logic regarding 

player's performance rating 



Table 2 – Statistics of the retrieved data 

No. of retrieved matches – dataset 1 (D1) 1,101,299 

No. of valid matches – dataset 2 (D2) 1,101,137 

No. of matches for which ACARI ratings 

could be calculated – dataset 3 (D3) 
443,356 

Apart from that, we retrieved players’ rating data from the 
Ranked MMR Ladder (http://www.heroesofnewerth.com/ 
ladder/), which was then used to calculate player’s initial 
MMR, because the data from the HoN API contains only 
MMR changes and not the player’s initial MMR at the 
beginning of each match. The “initial MMR” is considered to 
be the player’s MMR in the first match he played, that was 
recorded in the retrieved match data. It is calculated 
“backwards” – by subtracting the rating adjustments, available 
in the match data, from the most recent MMR obtained from 
the ladder. The initial MMR was also needed to calculate 
MMR for every role and total MMR used for evaluation of 
ACARI. Combining the data from HoN Statistics API and 
Ranked MMR Ladder, we have obtained match data from the 
December 20, 2014, to the April 29, 2015. Ladder was 
retrieved on the April 29, 2015. This data corresponds to the 
dataset D1 (Table 2), which needed to be filtered. First, we 
removed all malformed entries (e.g., only one player or one 
team, results exist only for one player, and no information 
about the hero used). Such matches do not contain all the 
information needed for calculating the role MMR and total 
MMR, so they have been filtered out as invalid – resulting in 
the filtered dataset D2. Finally, the total number of players 
participating in the matches (166,502) in dataset D2 is greater 
than the total number of players listed on the ladder (135,007), 
and it is also greater than the total number of players for whom 
the initial MMR had been calculated (102,245). A possible 
explanation for this discrepancy is that some players did not 
participate in any of the retrieved matches (which could be 
because they did not play ranked matches, but played other 
types of matches). The dataset D3 represents all matches for 
which role MMR could be calculated for all participants. To 
validate our filtering process, we calculated the distribution of 
the initial MMR for all players in D3. The best fit was normal 
distribution with parameters μ=1536, σ=112.5, which is in line 
with previous findings about HoN’s MMR distribution 
(μ=1528, σ=112) [16]. Obtained datasets are freely available, 
and interested parties may contact the authors to obtain them. 

B. Evaluation process 

First we should note the parameters of the ACARI model 
which were used for the use case of HoN. Using the 
performance parameters of the team, we define the vector TP: 

                                              
                       

Note that the performance parameters comprising the TP 
are calculated for the team as a whole. Using the performance 
parameters of an individual player, we define the vector P: 

                                                
                                                           
                                                     
                                                         . 

In HoN there are over 120 heroes available, and each hero 
has a role vector    determined by the game designers (this 
data is accessible through the HoN Statistics API). The defined 
set of roles R in HoN is: 

                                                  

We evaluate ACARI by comparing the expected match 
result (ER) according to Elo algorithm for two different input 
ratings: 1) ratings of the existing system in HoN, and 2) ratings 
calculated with extending the existing system in HoN with 
ACARI. The reason for using Elo algorithm is because, to the 
best of our knowledge, it is the base algorithm for rating and 
matchmaking system in HoN. The ER (         serves as 
a predictor of which team is more likely to win (according to a 
given rating system), and it is calculated by the expression [3]: 

   
 

                                          (14) 

where    and    are the average MMRs of the opposing teams 
A and B, respectively. Value of ER is interpreted as follows: 

 if ER is greater or equal than 0.5, it is assumed that team A 
will win, 

 if ER is less than 0.5, it is assumed that team A will lose.  

The closer the value of ER is to 1, the more “confident” is 
the algorithm in the team A’s victory. It is also important to 
note that the expected result determines the balance of the 
match – the closer the average MMRs of the opposing teams, 
the more balanced the match. (The balance must be appropriate 
for a match to start.) Only matches in which all players have a 
known initial MMR can be considered for evaluating ACARI, 
meaning that the dataset D3 (with 443,356 matches) is used. 

We evaluate ACARI in two ways – by using the role MMR 
and by using the total MMR. We assume that using the role 
MMRs will give better results, since it better reflects the skill 
level of the player for all roles that the player’s hero took in 
that particular match (as recorded in the match data).  

VI. RESULTS 

The expected result is calculated for the winning team, and 
six categories of the evaluation outcomes are defined in Table 
3.  

Table 3 – Evaluation outcome categories 

Code Interpretation 

YYA Both rating algorithms had correctly calculated 

outcomes, but ACARI was more certain in the 

calculated result 

YYE Both rating algorithms had correctly calculated 

outcomes, but the existing HoN algorithm was more 

certain in the result 

YNA ACARI had a correctly calculated outcome, while 

the existing HoN rating did not 

NNE Both rating algorithms did not have correctly 

calculated outcomes, but ACARI was less certain  

NNA Both rating algorithms did not have correctly 

calculated outcomes, but ACARI was more certain 

NYE The existing HoN rating had a correctly calculated 

outcome, while ACARI did not 



Each category is represented by a three-letter code, in which 

the first letter denotes whether ACARI ratings resulted in a 

correct prediction of the winner (Y or N), the second letter 

denotes whether existing HoN rating resulted in a correct 

prediction (Yes or No), and the third letter shows which 

algorithm (ACARI, or Existing HoN algorithm), did better in 

terms of prediction “certainty” (based on the ER value, e.g., 

ER value of 0.8 means higher prediction certainty than 0.65).  

The evaluation results are shown in the Figure 3. In both 
cases ACARI gives better results compared to results of the 
current rating system. In total, ACARI predicted the match 
outcome correctly in 50.22% of the total number of matches 
when using the total MMR, and 59.99% when using the role 
MMR, while for the existing HoN ratings that number is 
48.48%. In both cases, most of the results belong to the 
category in which both ACARI and existing ratings correctly 
predicted the outcome, but ACARI was more certain in the 
calculated result (YYA). Using role MMR yielded significantly 
better results than using total MMR, thus increasing the overall 
accuracy (YYA, YYE, and YNA) and certainty of prediction 
(increased YYA and YNA). Number of the outcomes when 
ACARI rating resulted in a correct prediction and the existing 
HoN ratings did not, compared to reverse case (YNA and NYE 
respectively) is almost threefold. As expected, role MMRs give 
better results, but in both cases an improvement over the 
existing rating algorithm has been convincingly demonstrated.  

In practical terms, to enable the use of role MMR, the order 
of hero selection and the start of matchmaking process should 
be reversed. Namely, in current HoN implementation, the 
teams are formed first, followed by the hero selection, and to 
enable the use of role MMR, it should be the other way round, 
so that the player chooses a hero first, followed by the 
matchmaking process. 

VII. CONCLUSIONS AND FUTURE WORK 

To summarize, ACARI gives better results and outcome is 
correctly predicted in more than 50% of the total number of 
matches when using total MMR and almost in 60% when using 
role MMR. ACARI can be used in all MOBAs based on same 
principles as HoN (i.e., that every player has a role in the 
match) with minor adjustments.  

In future work we aim to use machine learning algorithms 

to find out which coefficients that relate parameters to roles 
would yield the most precise results, to construct methods for 
exact role detection, and to compare ACARI to similar rating 
systems mentioned in Section II.  
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